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Abstract—The volumetric heating due to radiation absorption has been computed as a function of radial
position for spherical water droplets in black body surrounds of temperatures up to 1450 K. The droplet
effective absorptance and the time to evaporate from a reference diameter to any smaller diameter have
also been computed and tabuiated. By taking differences between entries in the table, the time to
evaporate from one size to another size can be found. The ray tracing procedure developed for these
computations includes polarization, refraction, external reflection, multiple internal reflections, and

absorption.
NOMENCLATURE U, relative velocity ;

a, imaginary part of the propagation vector; Vv, complex propagation vector, k—ia;
A, droplet surface area; X, size parameter, nD/4;
A,  droplet cross sectional area, nR?; X, acceleratton.
B, superheat parameter,

p(T,— Tud/hy, —a,/m"); Greck symbols
¢, speed of light in a vacuum o, absorptance;

[2.997925 x 108 m/s]; a;,  absorption of a ray in one traversal;
¢,  drag coefficient, d/(3p,U%4,); 0, incident ray angle, angle;
Cps heat capacity at constant pressure; K, negative imaginary part of #;
d, drag; 2, wave length in a vacuum;
D, droplet diameter; U, dynamic viscosity;
E, electric field vector; v, wavenumber in a vacuum;
F, generalized Snell’s law parameter; 0, reflectivity, density;
g, gravitational acceleration [9.80665 m/s*]; a, Stefan—Boltzmann constant
h, Planck’s constant [6.6256 x 10734 Js™!]; [5.6697 x 10”8 W/m?K*];
s, heat of fusion; o, initial refracted angle;
H, magnetic field vector; w, frequency;
I, intensity; Q, solid angle.
k, thermal conductivity;
k, real part of the propagation vector; Subscripts
k., Boltzmann constant abs, absorbed ;

[1.38054 x 10723 J K~ ']; B, black body;
K, absorption coefficient ; ¢, convective;
L, parallel layer thickness; eff, effective;
m’,  surface mass flux; i, of the incident side;
n, real part of 71; 1, of the liquid;
i, complex refractive index, n—ix; 0, initial ;
Nuy, Nusselt number, g D/k(T, —T.,.); r, of the refracted side, radiative;
Pr, Prandtl number, pc,/k; sat, ofsaturation;
q, heat flux; v, of the ambient vapor;
Q. power; 1,  of the perpendicular polarization
r. radial position; component ;
F, Fresnel coefficient ; I, of the parallel polarization component.
R, droplet radius;
Re, real part of; Superscripts
Rep,, Reynolds number, p, UD/u; *, complex conjugate of;
s, distance along a ray; . unit vector;
£ time; *, without blowing;
T, temperature; 5 a complex quantity.
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INTRODUCTION

Srrays of droplets arc heated in numerous industrial
processes such as in combustion sprays, spray
cooling, and spray drying. The evaporation of these
sprays is most commonly analyzed by assuming that
each droplet behaves independently from the others
[1--5]. Droplets are grouped by their size range, and
evaporation within a group is determined from the
single droplet heat-transfer coefficient of the average
droplet size in that group. Radiative transfer to
droplets is rarely included in such computations, yet
in situations with very high temperature surrounds,
such as in various postulated nuclear reactor
accident scenarios, the radiative transfer can be even
more significant than the convective transfer.

During the “rewetting” or “reflood™ portions of a
hypothetical Loss of Coolant Accident, water drop-
lets are enclosed by hot dry closely spaced fuel rods
which have overall emissivities between 0.7 and 0.8
{6]. In such an enclosure, droplet radiative absorp-
tion should be computed assuming cach droplet has
uniform black body surrounds.

The exact solution to Maxwell’s equations for an
electromagnetic wave incident upon a sphere with a
complex index of refraction (iLe. absorbing sphere)
was formulated by Mie [7]. Mie theory has been
used to compute absorption by spheres with various
constant values of the compiex index of refraction
[8 11]. However, it is too expensive to compute
enough absorption values to integrate over fre-
quency for the strongly frequency dependent and
band-like complex index of refraction of water (see
Fig. 1). There is an asymptotic approximation to
Mie theory for the absorptance of large or moderate
sized spheres [8].

a=1+2exp(—4xx)/dxr
+2[exp(~4xr)—1]/4xx)s, (1)

where x ==D/i is the size parameter, D is the
diameter, 4 is the wavelength, and « is the negative
imaginary part of the refractive index. Unfortunately,
the derivation of equation (1) also assumes that x is
small and that the real part of the index of refraction,
n, is close to one.

Chan and Grolmes [12] suggest that equation (1)
could be used for water droplet absorption com-
putations. However, Plass [9] graphed equation (1)
along with exact Mie theory solutions for com-
parison, with the size parameter ranging from 0 to
28, the real part of the refractive index being 1.33,
and the imaginary part 0.0001, 0.01, and 0.1. Ray
optics computations deviate from exact Mie theory
only about half as much as equation (1) does for the
cases considered by Plass. In the limit of very large
droplets, ray optics show that the external reflection
is about 7%, while because of the refractive index
assumptions, equation (1) shows no external
reflection.

Mie’s theory can be approximated with ray optics
when the sphere diameter is much larger than the
wavelength of the radiation. For excellent quanti-
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F1G. 1. Complex refractive index of water [15].

tative agreement between the two theories on fine
details such as the angular scattering distribution
including rainbows and glories, the size parameter
must be greater than 400 {13]. For the absorption
cross section, however, ray optics gives good results if
the size parameter is greater than 30 [9-i1]. For a
black body intensity distribution of temperature T,
it DT, is greater than 100 [mmK], the size
parameter would be above 30 for the bulk of
radiation, and error in the ray-tracing absorption
computation is less than 5%, The effects of
resonances tend to cancel for such a continuous
intensity distribution.

Ray tracing has been used previously to compute
absorption by spheres irradiated at single wave-
lengths {14]. Refraction and external reflection were
included, but they were computed based on only the
real part of the index of refraction. Refraction focuses
the rays towards the sphere center, but the rays are
attenuated as they travel through the sphere. Thus,
the volumetric heating is higher near the center for
weakly absorbing or small spheres, but the volu-
metric heating is higher near the surface for
strongly absorbing or large spheres.

The complex refractive index of water at room
temperature (298 K) as a function of wavelength is
well established in the infrared [15-17]. The com-
plex refractive index of water at higher temperatures
[17.18] is not substantially different for the present
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purposes from that at room temperature. The more
reliable and complete 298 K values [15] have been
used in the present work (see Fig. 1).

RAY TRACING IN AN ABSORBING MEDIUM
The refracted angle of a plane wave encountering
a semi-infinite absorbing medium depends on the
imaginary part of the refractive index as well as the
real part. The absorption actually has some de-
pendence on the refracted angle. If a complex
propagation vector is defined as

V =k—ia, (2)

Moreover, since equation (9) must hold separately in

{02 = K2y [0 — K22 + 4l Joos 0,212 112 sin 6,

where k, is defined as w/c. The real and imaginary

parts of equation (7) supply two relations with the

two unknowns a and k. Thus, equation (7) results in
nick3

= 8
4 kcos0 ®

and
k
o= o)

()
. 2
+ %[(nz -k + 4<‘m\—>
cosf

142152
J } )

both media, equations (5a) and (9) can be combined as

= {7 = k7)) +[(nf — k7)? +4(n,,/c0s 0,)*] 2} 12 sin 0, (10)

This modified Snell's law was derived previously by Bell er al. [19]. Equation (10) can be arranged in the

form

Sin gr = [(ni/nr) Sin 61] F(ni’ Kiy Ny Ky 01-),

where for n; = 1 and «; = 0, dropping the r subscript,

(1)

(12)

i 2[1\‘2—(1

then the components of the refracted wave can be
written as

E = Eoei(ml—\"r) — Eoe—a~rei(w1-k-r)

(3a)

H= HO e[((ul—v-r) — Hoe-a-rei(wt—k-r)’ (3b)

where r is an arbitrary position vector. The incident
wave components are of this same form, and so the
matching condition

Vir=V_r )

must hold for r along the interface, where the
subscripts i and r denote of the incident wave and of
the refracted wave, respectively. Noting that a is zero
in the incident (non-absorbing) medium, the real and
imaginary parts of matching condition (4) result in
the two relations

k;sin0, = k,sin0,

a,-r=0,

(5a)
(5b)

where k; and k, are |k, and |k,|, respectively. Thus, a
is normal to the interface, while k is in the direction
of propagation.

The magnitudes of the propagation vector com-
ponents, ¢ and k, can be found from the wave
equation,

V2E = ﬁ 62AE (6)

2 o’
where 7 = n—ix is the complex refractive index and
¢ is the speed of light in a vacuum. For plane

harmonic waves we have V¢ = —iVy and
/0t = iy, so that the wave equation becomes
(k—ia) (k—ia) = (n—ix)?k2, (7)

(— (n? —k? +sin? 0;) + { (n? — k? +sin? 0,)* + 4[n?Kk? — (n? — k?)sin? 9,]}"21"2

K2 ’
_ " sin2o. -‘
apy |

The power crossing .a unit area perpendicular to
the propagation direction is given by the Poynting
theorem [20] as

1dQS =1Re(E x H*)

13
= }(E, x Holo 1)

where s is a position vector in the propagation
direction and where § is a unit vector. E,, Hy, and §
are mutually perpendicular, so that

1dQ = $E,Hye ", (14)

To find the absorbed fraction of the incident wave
intensity, we need only concern ourselves with the
e~?*'s decay. From equation (8)

—2a-s = —2snr(w/c)(ky/k), (15)
and since
2re
w =27y = ~—, (16}
A

where 1 is the wavelength in a vacuum, the ray
intensity is diminished as

I=1Tye 2% =],e K, (17a)

where
K = (4nx/i)(nko/k). (17b)

K has a weak dependence on the refracted angle as
can be seen from equations (9) and (17b). This
exponential decay coefficient is different from the
decay coefficient for a plane wave in a single medium
[21] by the factor (nko/k). This factor is not seen
elsewhere in the literature because other derivations
of equations similar to these have not included both
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absorbing materials and real non-normal angles.
This factor is one for a wave of normal incidence:
the factor also becomes unity in the «? <« n?* limit,

The reflected intensity fraction of a plane wave
encountering a plane surface is obtained from the

Fresnel coefficients [20]
_ hycosB—h;cos
Fl=——a—T %
n,cosl;+n;cos ),

(18a)

n;cos U;—n,cos ),

;” = ~ N TR . (lgb)
i;cos 0;+n, cos 0,

The reflected fractions of the perpendicular and

parallel components are then

p,=7F FF and (19)

pi = s

respectively. Typically, either §; or §, will be a known
real angle (the angle on the non-absorbing side), and
the cosine of the other angle is obtained from the
relation cosd = (1 —sin? M2, using Snell's law in
the form

i;sinf; = n,sin0,.

(20)

Note that the—not physically meaningful—complex
refracted angle §,, and the real refracted angle 0,, are
different, and thus equations (11) and (20) are two
different forms of Snell’s law.

In using ray theory, it is assumed that surfaces act
locally flat and that all waves act locally as though
they were plane waves. The rays are in the wave
propagation direction, and they have the local wave
intensity. In tracing a single ray through a droplet
(see Fig. 2), from the incident angle 0, equations (11)
and (12) are used to find the initial refracted angle ¢.
By symmetry, ¢ becomes the incident angle for all
internal reflections, and Dcos¢ is the distance
travelled between consecutive surface encounters. The
fraction of the remaining ray intensity absorbed in
one such traversal is

—KDcos¢

a=l—c . (21)

The reflected intensity fraction, p, of an exterior ray
first encountering the droplet surface is found from
equations (18)-(20). For surface encounters by an
internal ray, 0 will be the refracted angle, due to

F1G. 2. Droplet ray tracing.

interchangeability of the i and r subscripts in
equation (10). The reflected intensity fraction on
each of these internal ray encounters with the surface
is found to be identical to that for the initial external
reflection. However. this reflectivity for the per-
pendicular polarized ray component, ¢, is different
from that for the parallel component. p),.

To compute the absorbed fraction of a single ray
incident upon the droplet, the absorption in the
infinite series of traversals between internal re-
flections must be summed. For the perpendicularly
polarized components, (I —p ) p (1—x)]*"" is
the fraction of the initial intensity which is absorbed
on the nth traversal. The same infinite geometric
series holds for the parallel component with p,
replaced by p,. The total absorbed fraction is
obtained by summing the series, which after averag-
ing the perpendicular and parallel component absorp-
tions, assuming initially equal perpendicular and
parallel component intensities outside the droplet,
results in

| al=po)

a {1 =py)
o= | e -
l—p, (1—2)

(22
lpr(lel)

In the limit of strong absorption (i.e. large KD or 2,
approaching unity) the droplet absorbs all radiation
that is initially transmitted through the droplet
surface
lim o= 1—%(p +py) (23)
2~ 1
In the limit of weak absorption (i.e. small KD or x,
approaching zero) x approaches z,.

Absorption of single rays by a droplet must be
weighted with the incident power distribution and
integrated over solid angle and wavenumber to
obtain the total absorbed power per unit droplet
surface area. The differential power distribution is

d°Q = I(v)cos 0 d2Qdvd>4, (24)

where [ 1s the intensity distribution, Q is solid angle
and A is droplet surface area. For a uniformly
irradiated droplet, the absorbed power is

o T2

Quh.~ = 27TZD2 ‘

v

1(\'){ a(v,0)cos Osin0do |dv.

W0

(25)

For black body radiation. the intensity distribution
is
2he?y?

I=ly= " (26

¥ explhev/k, Ty)—1 )
where h is Planck’s constant and k_ is the Boltzmann
constant. The effective absorptance of a droplet is the
ratio of absorbed power to incident power

Aegp = ths//Qi (27)
where the incident power is given by
Q, = n?D? [ I(v)dy. (28)
JO
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For a black body intensity distribution,
Q;=nrD?T;, where ¢ is the Stefan-Boltzmann
constant. The average droplet volumetric heating is
the absorbed power divided by the droplet volume,
but the volumetric heating is‘a function of radial
position within the droplet.

RADIAL DEPENDENCE OF ABSORPTION

The intensity attenuation, equation (17a), can be
expressed as a function of the radial position, r (see
Fig. 2), by replacing s with

s = R{cos ¢ + [(r/R)* —sin? $]'/2} (29)

from the law of cosines, where R is the droplet
radius. Note that values of r less than Rsin¢ are not
on the ray path, and each value of r on the ray path
occurs twice on one traversal of the droplet. The
intensity of a single ray on the first traversal is then

I.(r) = Iexp(~ KR{cos ¢ +[(r/R)* —sin® $]"?})
for r =2 Rsing (30)

I.{r)=0 for r<Rsing.

The absorption distribution for each of the infinite
series of droplet traversals by a single ray will have
the same radial dependence as the first traversal.
Thus, the fraction of the absorption of a single ray
occurring in the spherical shell r, <r <y i

1-A("z)—1»(7’1)+I+(h)—1+(h)‘ 31)
I_(R)—1.(R)

The total power absorbed in this shell is obtained by
multiplying « in equation {25) by a{r,,r,) of equation
(31), thus integrating over rays of all incident angles
and wavelengths. The volumetric heating in this shell
is then the power absorbed minus the power emitted
by the shell divided by the shell volume, $r(r3—r3).
For an isothermal droplet, the local emitted power is
what the local absorbed power would be for Ty at
the droplet temperature.

alry,ry) =

DROPLET EVAPORATION RATE

Simple correlations for droplet drag and con-
vective heating can be used with the present
determinations of radiative heating to demonstrate
evaporation rates and the relative magnitudes of
radiative and convective heating,

In many typical nuclear reactor accident scenarios
water droplets are heated in very hot water vapor
with a fairly low concentration of noncondensable
gas. A droplet so situated reaches or becomes near
the saturation temperature relatively quickly. Fur-
ther heating causes evaporation; as shown in the
following section, there would be negligible internal
superheating. The evaporative mass flux at the
surface is

- q

m —

= (32)
he,

where h;, is the heat of vaporization and g = g, +4¢.
is the combined radiative and convective heat flux.

The time rate of change of the droplet size is
1dD gq
2dr T i,
where p, is the liquid density. This rate of change is
integrated to obtain the evaporation time
_pihy, [P dD
T o la,a0)

The radiative heat flux for black body surrounds at
temperature T} is

(33)

(34)

q, = aeff(TB)G-TI;I._O‘cff(Tﬂm)ﬁ.T4

sag?

(35)

because the droplet emissivity is o (T,) from
Kirchhoff’s law.

The Reynolds number and Nusselt number of an
evaporating droplet are generally functions of time.
However, this unsteady convection can usually be
well approximated using a quasi-steady approach, as
has been shown for droplets falling from rest
[23-25] and in situations with much larger acceler-
ations [26]. The time constants in fall from rest are
shorter than the evaporation rate time constants
even when the ambient temperature is 1450 K.

The steady state drag coefficient for rigid spheres,
defined as

d
T 1/2p,U%A,
where d is the drag, p, the ambient density, U the
relative free stream velocity, and A, = nR?, is well
correlated [27] by the simple relation

¢y = 0.2924(1 +9.06/Rel2)2.

(36)

Cq

(37)

Yuen and Chen [ 28] show that this rigid sphere drag
also holds approximately for evaporating droplets;
the effect of blowing (normal velocity at the surface)
on ¢; can be neglected for the present purposes.
Their explanation is that although viscous drag is
reduced by blowing, pressure drag is increased,
because separation occurs earlier with blowing.
The droplet acceleration is found to be

. 3 2
ema(10) D e
I 4 p.p D"
from a simple force balance. The Reynolds number

as a function of time is obtained by integrating
equation (38)

(38)

UD ) )
Rept)=" =Ren(0)+pg—<1-f’~)z
H H 4
3uD ['Reke
—fi-f %4 (39)
4 p! w0 D3

This droplet Reynolds number can be approximated
by the terminal Reynolds number if x is much less
than g. From equations (37) and (38) the terminal
Reynolds number is

{ —453+ {20.52

3 - 12 91;2y2
(D gm{p; 03] J } (40)

Rep =

+2.135
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Table 1. Effective absorptance, o,
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D [mm]/T, [K] = 373 450 650 850 1050 1250 1450
% 0919 0925 0930 0932 0932 0933 0934
3.0 0919 0924 0930 0930 0924 0908 0881
20 0919 0924 0930 0927 0915 0892 0858
10 0919 0924 0928 0918 0893 0854 0805
0.5 0919 0924 0924 0905 0865 0809 0745
02 0917 0920 0910 0871 0810 0735 0636
0.1 0907 0902 0870 0815 0740 0657 0575
0.05 0865 0844 0782 0714 0637 03557 0481
0.02 0726 0680 0592 0530 0470 0410 0352
0.0 0000 0000 0000 000G 0000 0000 0.000

The average Nusselt number for a sphere without
blowing is well correlated by [29]

gD
Nup = ————— = 1.56 +0.616Re}2Pr!"?
KT.—T.)
for Re,Pr*? =2 (4la)
= 2.00+0.216Re, Pr*?
for Re,Pri? < 2. (41b)

A very common heat-transfer blowing correction
invoked for evaporating droplets [ 30] is
L In{l+B)

go=al (42)

where the superheat parameter is

AT~ T, AT =T
g el Tl Gull—Ta) (; " ff:) (43)
hpg—q./m" by,

and where ¢, is the heat capacity at constant
pressure evaluated at the ambient temperature. The
thermal conductivity, k, and the viscosity, u, have
often been successfully evaluated at the *1/3 rule”
reference temperature [ 28], T, = T, +(T.~ T,)/3.

RESULTS AND CONCLUSIONS

The present ray tracing procedure and that of
Edwards [22] for thick plane parallel layers are
algebraically very different, but in actual physical
modeling, they differ only in how the phase of the
electromagnetic radiation is handled. In the present
procedure, the phase is ignored or effectively aver-
aged before the ray encounters any surface. Edwards
retains the phase in his ray tracing, which allows
interference effects, then he averages over phase by
integrating after the ray tracing is completed. A
computer code was obtained from Edwards which
computes perpendicular and parallel components of
transmittance, reflectance, and absorptance for a
thick parallel layer using his approach; another
computer code was written which computes the same
parameters using the present analysis. Due to
analogous symmetries, the parallel layer absorption
problem is nearly identical to the sphere absorption
problem. Runs were made with the two codes for
layer thicknesses of 0.1 and 0.5 mm, with the optical
properties of water, at various incident angles and

wavelengths. In all cases, the results of the two codes
were identical to five or six significant figures.

The effective absorptance of water droplets has
been computed for black body temperatures from
373 to 1450K and droplet diameters from 0.02 to
3.0mm (see Table 1). The integrals in equation (25)
were evaluated using the trapezoidal rule with 50
equal divisions of 0 and with 157 different wave
lengths from 0.5 to 200pum (at those values in [15]
where the complex refractive index is tabulated). It
can be seen from Table 1 that water droplets absorb
very strongly. The effective absorptance is only
weakly dependent on the black body temperature,
but the effective absorptance is generally greater for

1010 E T T T T T A T E
 0.02mm B
- 4
109 = /
- 0.06 mm
= |
0.10 mm i
108 - “
F 020mm H
- & .
£
3 4
d — ]
107 | -
- (.50 mm »
108 |- 1.00 mm B
- 2.00 mm "]
3.00 mm
105 i ; | L | :
0 2 4 6 8 1.0
(r/R)
FiG. 3. Radial dependence of volumetric heating,

T, = 650K.
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108 —
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107 3.0 mm ]
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Fig. 4. Radial dependence of volumetric

T, = 1050K.

heating,

lower black body temperatures. The emissivity of an
isothermal droplet, from Kirchhoff’s law, is the
effective absorptance evaluated at the droplet
temperature.

The volumetric heating as a function of radial
position has been computed using equation (31) with
twenty equal radial divisions of the droplet (see Figs.

1012 e T i T I T T T
10!t b
i 0.02 mm A
0.05 mm l
10
10 - ;|
. 0.10mm !
N
% n i
2 - 020mm
g — |
S .. /
10 - 0.50 mm 3
P 1.00 mm —
I 2.00mm ]
108 L 3.00mm ]
| ]
107 RS RPN NUUETRR S
0. .2 4 .6 8 1.0
{r/R)

FiG. 5. Radial dependence of volumetric

T, = 1450K.

heating,

3-5), for black body temperatures 650, 1050 and
1450K, for an isothermal droplet temperature of
373K, and for a range of droplet diameters. The
same 157 wave number divisions and 50 equal
angular divisions as mentioned previously were used
for these computations. Most rays in the black body
distribution are strongly attenuated and do not

Table 2. Cumulative evaporation time (s) for water droplets at their instantaneous
terminal velocity with T, = T

D[mm)/T,[K]= 450 650 850 1050 1250 1450
30 0.0 0.0 0.0 0.0 00 0.0
28 122 347 1.94 127 0885  0.640
26 243 6.90 385 252 176 1.8
24 360 103 5.75 3.76 2.63 1.91
22 478 136 7.61 498 350 254
20 592 167 9.45 6.19 435 316
18 704 201 1.3 7.38 519 378
L6 814 322 13.0 8.55 603 440
1.4 921 263 148 9.70 685 500
12 1020 293 16.4 10.8 765 560
10 1120 321 18.1 119 844 619
08 1220 349 19.7 130 921 677
0.6 1310 376 212 14.0 994 132
04 1400 400 226 149 10.6 7.84
0.2 1470 422 238 15.7 11.2 8.30
0.1 1500 429 242 160 11.4 8.45
0.01 1510 433 244 16.1 1.5 R.S1
0.00 1510 433 244 16.1 115 8.51
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Table 3. Fall distance (m) of evaporating water droplets during their lifetime with 7. = 7,

D[mm]/T,[K]= 450 650 850 1050 1250 1450
3.0 12460 4018 2438 169.2 124.1 92.98
28 1089.0 3506 2123 147.2 107.9 80.8%
26 9416 3022 182.7 126.5 92.70 69.48
2.4 8038 2572 155.2 107.3 78.55 58.86
22 6754 2154 1296 89.44 65.42 49.01
20 557.6 177.1 106.2 73.13 53.42 40.00
1.8 450.1 142.2 84.96 58.33 4254 31.82
1.6 3534 111.0 6597 45.13 3283 24.52
1.4 267.3 83.31 49.22 3351 2431 18.13
1.2 192.6 59.42 34.83 2357 17.03 12,67
10 129.6 39.45 2287 15.35 11.02 8.17
08 78.5 23.46 13.39 8.88 6.32 4.66
0.6 40.1 11.62 6.48 422 297 217
0.4 14.5 401 215 1.36 093 0.67
0.2 2 0.51 0.25 0.15 0.10 0.07
0.1 0.2 0.04 002 0.01 0.00 0.00
0.01 0.0 0.00 0.00 0.00 0.00 0.00

Table 4. Heat flux ratio, g,/q,., for water droplets at their instantaneous terminal
velocity with T, = T,

D[mm]/T,[K]= 450 650 850 1050 1250 1450
3.0 0069 0157 0314 0584 105 1.88
28 0068 0155 0310 0574 103 1.83
26 0067 0152 0304 0563 100 1.78
2.4 0066 0150 0300 0551 0982 172
22 0065 0147 0293 0539 0954 166
20 0063 0144 0286 0525 0924 160
18 0062 0141 0279 0510 0892 153
16 0061 0137 0271 0493 0857 145
14 0059 0133 0264 0477 0825 138
12 0057 0129 0254 0457 0781 129
1.0 0055 0124 0243 0433 0729 I8
0.8 0052 0118 0229 0404 0669  1.06
0.6 0049 0110 0213 0369 0599 0920
04 0045 0098 0185 0311 0484  0.707
02 0036 0075 0134 0210 0298  0.393
0.1 0025 0046 0074 0105 0139  0.172
0.03 0007 0012 0019 0026 0033 0039
0.0l 0001 0002 0003 0004 0005  0.006

penetrate far past the surface. Rays at some wave
numbers are only weakly absorbed. These weakly
absorbed rays are focused toward the center, which
explains the relative maximum in volumetric heating
in the 0.7 < (r/R) < 0.8 region which occurs for the
smaller droplets.

To demonstrate typical relative magnitudes of
radiative heat flux and convective heat flux, and to
demonstrate typical evaporation times, these para-
meters were computed for water droplets falling at
their instantaneous terminal velocity relative to pure
superheated water vapor at a pressure of one bar.
The ambient vapor temperature was taken to be
equal to the black body radiating temperature. The
fluid properties were taken from [31] with wx, k, and
Pr evaluated at the “1/3 rule” reference temperature
and p, evaluated at the ambient temperature. For a
given temperature of the surrounds, the droplet
evaporation rate, dD/d¢, is approximately constant

for droplets larger than | mm, while dD?/d¢ is nearly
constant for droplets smaller than 0.1 mm. The total
evaporation of an initially 1-3mm diameter droplet
takes tens of seconds, while the total evaporation of
a 0. mm droplet takes tenths of seconds (see Table
2). The fall distance of evaporating droplets during
their lifetime is given in Table 3. The radiative heat
flux is generally very significant compared with the
convective heat flux, for temperatures above 450K,
unless the droplet diameter is less than 30pum (see
Table 4). The radiative heat transfer to the droplet
can actually be greater than the convective heat
transfer if the temperature of the surrounds is above
about 1250K.

The assumption that the droplet falls at its
instantaneous terminal velocity is the same as the
assumption that the fall velocity does not depend on
past history; this holds when the acceleration, X, is
much less than g. In the just described evaporation
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computations, the highest acceleration (at 1450K)
was X = —0.3g. If history effects were included for
this 1450 K case, starting with a 3mm droplet at its
terminal velocity, the instantaneous Reynolds num-
bers would be only as much as 7% higher for this
extreme case. The maximum acceleration for other
surround temperatures can be estimated by pro-
portioning the evaporation times. The instantaneous
terminal velocity approximation is usually very
good.
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ABSORPTION RADIATIVE PAR EVAPORATION DE GOUTTELETTES

Résumé—Le chauffage volumique du a l'absorption radiative est calculé en fonction de la position radiale

de gouttelettes sphériques d’eau dans un environnement de corps noir, a des températures allant jusqu’a

1450 K. L’absorptance effective de la goutte et le temps d’évaporation a partir d’'un diamétre de référence

a été calculé et tabulé. En prenant des différences entre entrées de la table, le temps pour évaporer d’un

diamétre a un autre peut étre trouvé. La procédure développée pour ces calculs inclut la polarisation, la
réfraction, la réflexion externe, les réflexions multiples internes et 'absorption.
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STRAHLUNGSABSORPTION DURCH VERDAMPFUNG VON TROPFCHEN

Zusammenfassung —Die Erwidrmung eines Volumens durch Strahlungsabsorption wurde als Funktion
der radialen Position fiir kugelférmige Wassertropfen in der Umgebung von schwarzen Korpern mit
Temperaturen bis zu 1450K berechnet. Die effektive Absorption des Tropfchens und die Verdampfung-
szeit von einem Referenzdurchmesser bis zu beliebigen kleineren Durchmessern wurde berechnet und
tabelliert. Durch Interpolation zwischen den Eingangswerten der Tabelle kann die Zeit fiir die
Verdampfung von einer GroBe zur nichsten gefunden werden. Bei der Berechnung der Strahlungsvor-
giinge wurden Polarisation. Brechung. duflere Reflexion, mehrfache innere Refiexion und Absorption
bertcksichtigt.

MO JTOMEHUE M3JIVYEHUA UCTIAPAIOIMMMHUCH KATUISAMHU

Annorauun —- Paccuntan ob6bémublii Harpes chepHyecKHX Kanenab Bodbi, o0ycnoBieHHBI Hornoie-

HHEM H3JAYUCHUS OT YEPHOTO Tejla npu TeMnepatypax BnaoTh no 1450 K xak ¢ywkuns paananbHoft

Koop/uHaThL. PaccunTansl Takke U 3atobynuposaust >bdexTHBHas norsowaTenbHas cnocobHOCcTh

KATLAHM ¥ BPEMS3, 33 KOTOPOE AHAMETP Kaflld MEHAETCH OT HAYaJIbHOTO A0 3aJaHHoro 3HaueHus. HanHbie,

npeacTasieHHble B TabJIMUE, MO3BOIAIOT PACCHHTATE BPEMA HCTIAPEHHS OT OIHOTO Pa3Mepa A0 Apyroro.

JlyueBoit noaxon. pa3BHTBHIH /IS 3THX PACHETOB, BKJIIOMACT NONAPHIALMI, pPePPakilMIO, BHYTPEHHEE
OTpPaXE€HHE, MHOrOKPATHbIE BHYTPEHHHE OTPAXEHHA M NOTOLICHHE.



