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Abstract-The,volumetric heating due to radiation absorption has been computed as a function of radial 
position for spherical water droplets in black body surrounds of temperatures up to 1450 K. The droplet 
effective absorptance and the time to evaporate from a reference diameter to any smaller diameter have 
also been computed and tabuiated. By taking differences between entries in the table, the time to 
evaporate from one size to another size can be found. The ray tracing procedure developed for these 
computations includes polarization, refraction, external reflection, multiple internal reflections, and 

absorption. 

NOMENCLATURE 

imaginary part of the propagation vector; 
droplet surface area ; 
droplet cross sectional area, ER’ ; 
superheat parameter, 

c,(T, - T,,,)l(h,” - 9,/h”); 

speed of light in a vacuum 
[2.997925 x lO’m/s] ; 
drag coefficient, d/(fp,.U’A,); 
heat capacity at constant pressure; 

drag ; 
droplet diameter; 
electric field vector; 
generalized Snell’s law parameter; 
gravitational acceleration [9.80665 m/s21 ; 
Planck’s constant [6.6256 x lo-j4 J s-l] ; 
heat of fusion ; 
magnetic field vector; 

intensity ; 
thermal conductivity ; 
real part of the propagation vector; 

Boltzmann constant 
[1.38054x 10-23JK-1]; 
absorption coefficient; 

parallel layer thickness; 

surface mass flux ; 
real part of ii; 
complex refractive index, n - iK; 

Nusselt number, q,D/k(T,- T,,,); 

Prandtl number, pcplk; 

heat flux ; 
power; 
radial position ; 
Fresnel coefficient ; 
droplet radius ; 
real part of; 
Reynolds number, p,UD/p; 

distance along a ray ; 
time ; 
temperature; 

u, relative velocity; 

V, complex propagation vector, k - ia ; 

x, size parameter, rcD/j. ; 

2, acceleration. 

Greek symbols 

absorptance; 

absorption of a ray in one traversal; 
incident ray angle, angle ; 
negative imaginary part of fi; 
wave length in a vacuum ; 
dynamic viscosity; 
wavenumber in a vacuum ; 
reflectivity, density; 

Stefan-Boltzmann constant 
r5.6697 x 10-s W/m’ K4] ; 
initial refracted angle ; 
frequency ; 
solid angle. 

Subscripts 

abs, absorbed ; 
4 black body ; 
c, convective; 

e& effective ; 
1, of the incident side; 

1, of the liquid ; 
0, initial ; 
r, of the refracted side, radiative; 

sat, of saturation; 

L’, of the ambient vapor; 

1, of the perpendicular polarization 
component; 

Il. of the parallel polarization component. 

Superscripts 
* 
A’ 

complex conjugate of; 
unit vector; 

+ without blowing ; 
a complex quantity. 
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SPRAYS of droplets arc heated in numerous industrial 

processes such as in combustion sprays, spray 
cooling, and spray drying. The evaporation of these 
sprays is most commonly analyzed by assuming that 

each droplet behaves independently from the others 
[I- 51. Droplets are grouped by their size range, and 

evaporation within a group is determined from the 
single droplet heat-transfer coefficient of the average 
droplet size in that group. Radiative transfer to 
droplets is rarely included in such computations, yet 
in situations with very high t~lperatLlre surrounds, 

such as in various postulated nuclear reactor 
accident scenarios, the radiative transfer can be even 

more significant than the convective transfer. 
During the “rewetting” or “reflood” portions of a 

hypothetical Loss of Coolant Accident. water drop- 
lets are enclosed by hot dry closely spaced fuel rods 
which have overall emissivities between 0.7 and 0.X 

[6]. In such an enclosure, droplet radiative absorp- 
tion should be computed assuming each droplet has 
uniform black body surrounds. 

The exact solution to Maxwell’s equations for an 

~i~tromagnetic wake incident upon a sphere with a 
complex index of refraction (i.e. absorbing sphere) 

was formulated by Mie [7]. Mie theory has been 
used to compute absorption by spheres with various 
constant values of the complex index of refraction 
[S Ill. However. it is too expensive to compute 

enough absorption values to integrate over frc- 
quency for the strongly frequency dependent and 
band-like complex index of refraction of water (see 
Fig. 1). There is an asymptotic approximation to 

Mie theory for the absorptance of large or moderate 
sized spheres [Xl. 

3= 1+2exp( -4xa):kh: 

+2[exp(-k#i)- 1]_1(4%,)2. (I) 

where s = S/ii is the size parameter, D is the 

diameter, i. is the wavelength, and K is the negative 
imaginary part of the refractive index. Unfortunately. 

the derivation of equation (1) also assumes that ti is 
small and that the real part of the index of refraction. 
II, is close to one. 

Chan and Grolmes [12] suggest that equation (1) 
could be used for water droplet absorption com- 
putations. However, Plass [9] graphed equation (1) 
along with exact Mie theory solutions for com- 
parison, with the size parameter ranging from 0 to 
28. the real part of the refractive index being 1.33. 
and the imaginary part 0.0001, 0.01, and 0.1. Ray 
optics computations deviate from exact Mie theory 
only about half as much as equation (1) does for the 
cases considered by Plass. In the limit of very large 
droplets, ray optics show that the external reflection 
is about 7”,,, while because of the refractive index 
assumptions, equation (1) shows no external 
reflection. 

Mie’s theory can be approximated wifh ray optics 
when the sphere diameter is much larger than the 
wavelength of the radiation. For excellent quanti- 

F’IG. 1. Complex refractive index of water [ 151. 

tative agreement between the two theories on fine 
details such as the angular scattering distribution 

including rainbows and glories, the size parameter 
must be greater than 400 [13]. For the absorption 
cross section. how-ever, ray optics gives good results if 

the size parameter is greater than 30 [9-I t]. For a 
black body intensity distribution of temperature T,, 
if OT,, is greater than 100 [mm K], the size 

parameter would be above 30 for the bulk of 

radiation, and error in the ray-tracing absorption 
computation is less than 5>{,. The effects of 
resonances tend to cancel for such a continuous 
intensity distribution. 

Ray tracing has been used previously to compute 

absorption by spheres irradiated at single wave- 
lengths [ 141. Refraction and external reflection were 
included, but they were computed based on only the 
real part of the index of refraction. Refraction focuses 
the rays towards the sphere center, but the rays are 
attenuated as they travel through the sphere. Thus, 
the volumetric heating is higher near the center for 
weakly absorbing or small spheres, but the volu- 
metric heating is higher near the surface for 
strongly absorbing or large spheres. 

The complex refractive index of water at room 
temperature (298 K) as a function of wavelength is 
well established in the infrared [ 15.-17). The com- 
plex refractive index of water at higher temperatures 
[17. 1X] is not substantially different for the present 
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purposes from that at room temperature. The more where k, is defined as w/c. The real and imaginary 

reliable and complete 298 K values [ 151 have been parts of equation (7) supply two relations with the 

used in the present work (see Fig. 1). two unknowns a and k. Thus, equation (7) results in 

RAY TRACING IN AN ABSORBING MEDIUM 
nrcki 

a- (8) 
The refracted angle of a plane wave encountering kcos0 

a semi-infinite absorbing medium depends on the 
imaginary part of the refractive index as well as the 

and 

real part. The absorption actually has some de- 

pendence on the refracted angle. If a complex 
k 

- = f@ _ k-2) 

propagation vector is defined as k, i 

V = k - ia, (2) 

Moreover, since equation (9) must hold separately in both media, equations (5a) and (9) can be combined as 

((nt - IC~)+[($ - ~2)’ +4(n,k-i~cosBi)2]1~2}112 sin Hi 

= {(~,2-~,Z)+[(~~-~,2)~+4(~,ti,/cos0,)~]~~~}~~~sinQ,. (10) 

This modified Snell’s law was derived previously by Bell et al. [19]. Equation (10) can be arranged in the 
form 

sin 8, = [&,/a,) sin ei] F(ni, tii, n,, K,, 0J, (11) 

where for ni = 1 and tii = 0, dropping the r subscript, 

F= 
-((n2-~2+sin2U,)+{(n2-k-2+sin2~i)2+4[~2~2-(n2-~2)sin2~i]}’~2 I’* 

2[x2-(1 - X:)sin20i-] 
.1 

(12) 

1 

The power crossing a unit area perpendicular to 
then the components of the refracted wave can be the propagation direction is given by the Poynting 
written as theorem [20] as 

E = E erl~ui+V 11 = ~Oe~a~re~(<~r-k-r) 
0 @a) 1&g =+Re(E x H*) 

(13) 
H = H el”“‘-’ r) = Hoe-8’re’(‘0t-k~‘) 

0 > (3b) 
=i(E, x H0)e-2a.s 

where r is an arbitrary position vector. The incident where s is a position vector in the propagation 

wave components are of this same form, and so the direction and where .G is a unit vector. E,, H,, and S 

matching condition are mutually perpendicular, so that 

Vi’r = V;r (4) IdR = )E,H, em”“. (14) 

must hold for r along the interface, where the To find the absorbed fraction of the incident wave 
subscripts i and r denote of the incident wave and of intensity, we need only concern ourselves with the 
the refracted wave, respectively. Noting that a is zero c-2a’s decay. From equation (8) 
in the incident (non-absorbing) medium, the real and 
imaginary parts of matching condition (4) result in - 2a. s = - 2snti(w/c)(k,/k), (15) 

the two relations and since 
kisinO, = k,sinH, (5a) 

2nc 
a,. r = 0, (5b) w = 2n\1 = --- , 

A 
(16) 

where ki and k, are lkil and Ik,l, respectively. Thus, a 

is normal to the interface, while k is in the direction where 1 is the wavelength in a vacuum, the ray 

of propagation. intensity is diminished as 

The magnitudes of the propagation vector com- 1 = 1, em’B’” = I,emK‘, (17a) 
ponents, a and k, can be found from the wave 
equation, where 

,j’ i2E 
V2E = ~ - (6) 

K = (4nrc/i.)(nk,/k). (1%) 
(.2 32 K has a weak dependence on the refracted angle as 

where fi = n - ix is the complex refractive index and 
can be seen from equations (9) and (17b). This 

c is the speed of light in a vacuum. For plane 
exponential decay coefficient is different from the 

harmonic waves we have VI,!I = -iVt+!~ and 
decay coefficient for a plane wave in a single medium 

&,b/& = io$, so that the wave equation becomes 
[21] by the factor (nk,/k). This factor is not seen 
elsewhere in the literature because other derivations 

(k-ia).(k-ia) = (n-iic)2k& (7) of equations similar to these have not included both 
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absorbing materials and real non-normal angles. 
This factor is one for a wave of normal incidence: 
the factor also becomes unity in the K’ CC 11’ limit. 

The reflected intensity fraction of a plane wave 
encountering a plane surface is obtained from the 

Fresnel coefficients [20] 

The reflected fractions of the perpendicular and 

parallel components are then 

/IL = ?l?T and p,, = I:,,?;. (19) 

respectively. Typically, either gi or gr will be a known 

real angle (the angle on the non-absorbing side), and 
the cosine of the other angle is obtained from the 
relation cos 0 = (I -sin* @‘I*, using Snell’s law in 
the form 

ri, sin 0, = E, sin (5,. (20) 

Note that the- not physically meaningful--complex 

refracted angle 8,, and the real refracted angle 0,, are 
different, and thus equations (1 I) and (20) are two 

different forms of Snell’s law. 

In using ray theory, it is assumed that surfaces act 
locally flat and that all waves act locally as though 
they were plane waves. The rays are in the wave 
propagation direction, and they have the local wave 
intensity. In tracing a single ray through a droplet 
(see Fig. 2). from the incident angle 0. equations (11) 
and (12) are used to find the initial refracted angle 4. 
By symmetry, 4 becomes the incident angle for all 
internal reflections, and DCOS~ is the distance 
travelled between consecutive surface encounters. The 

fraction of the remaining ray intensity absorbed in 
one such traversal is 

I, = 1 _e-f-~\d~~ (21) 

The reflected intensity fraction. I’, of an exterior ray 
first encountering the droplet surface is found from 
equations (18))(20). For surface encounters by an 

internal ray. (I will be the refracted angle. due to 

\ 

/-- 

interchangeability of the i and I’ subscripts in 
equation (10). The reflected intensity fraction on 
each of these internal ray encounters with the surface 
is found to be identical to that for the initial external 
reflection. However, this reflectivity for the per- 

pendicular polarized ray component, I’! 1 is different 
from that for the parallel component. 11,~. 

To compute the absorbed fraction of a single ray 

incident upon the droplet. the absorption in the 

infinite series of traversals between internal re- 
flections must be summed. For the perpendicularly 
polarized components, x,(1 -pi)[(~_(l -x,)]“~’ is 
the fraction of the initial intensity which is absorbed 
on the 17th traversal. The same inhnitc geometric 

series holds for the parallel component with I), 
replaced by FJ,,. The total absorbed fraction is 
obtained by summing the series. which after averag- 
ing the perpendicular and parallel component absorp- 
tions. assuming initially equal perpendicular and 

parallel component intensities outside the droplet. 
results in 

In the limit of strong absorption (i.e. large KD or X, 
approaching unity) the droplet absorbs all radiation 

that is initially transmitted through the droplet 

surface 

lim x = I -$(p +/J,,). (33) 
1, -I 

In the limit of weak absorption (i.e. small KD or X, 
approaching zero) r approaches x,. 

Absorption of single rays by a droplet must be 
weighted with the incident power distribution and 
integrated over solid angle and wavenumber to 
obtain the total absorbed power per unit droplet 
surface area. The differential power distribution is 

LI’Q = I(~‘)cosOd*Rd\,d”4. (‘4) 

where I is the intensity distribution, R is solid angle 

and A is droplet surface area. For a uniformly 
irradiated droplet, the absorbed power is 

QL,,,=2n2D2 ‘I I(v) 
I II 

‘~Z1(l.H)cosUsinlldil dv. 
” 0 * 0 

(75) 

For black body radiation. the intensity distribution 
is 

where h is Planck’s constant and k, is the Boltzmann 

constant. The effective absorptance of a droplet is the 
ratio of absorbed power to incident power 

X,U = Q.tdQi 
where the incident power is given by 

FE. 2. Droplet ray tracing 
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For a black body intensity distribution, 

Qi = nD2aT,4, where (r is the Stefan-Boltzmann 
constant. The average droplet volumetric heating is 
the absorbed power divided by the droplet volume, 
but the volumetric heating is ‘a function of radial 
position within the droplet. 

RADIAL DEPENDENCE OF ABSORPTION 

The intensity attenuation. equation (l-/a), can be 
expressed as a function of the radial position, r (see 

Fig. 2) by replacing s with 

s = R jcosc$ t_ [(r/R)2 -sin’(b]‘~“j (29) 

from the law of cosines, where R is the droplet 
radius. Note that values of r less than R sin 4 are not 

on the ray path, and each value oft on the ray path 

occurs twice on one traversal of the droplet. The 
intensity of a single ray on the first traversal is then 

I,(r) = I,exp(-KR:cos~f[(r/R)*-sin2~J’/‘1) 

for r 2 R sin&, (30) 

I,(r)=0 for r<Rsin4. 

The absorption distribution for each of the infinite 

series of droplet traversals by a single ray will have 
the same radial dependence as the first traversal. 
Thus, the fraction of the absorption of a single ray 

occurring in the spherical shell rI < r ,< r2 is 

x(rl, r2) = 
r..(r2)-l-(rl)+l+(rl)-I+(r2) 
-.-.-_______~ ----. (31) 

I-@-I+(R) 

The total power absorbed in this shell is obtained by 
multiplying CI in equation (25) by x(r2,rz) of equation 
(31). thus integrating over rays of all incident angles 
and wavelengths. The volumetric heating in this shell 

is then the power absorbed minus the power emitted 
by the shell divided by the shell volume, $r(r: - rf). 
For an isothermal droplet, the local emitted power is 
what the local absorbed power would be for r, at 

the droplet temperature. 

DROPLET EVAPORATION RATE 

Simple correlations for droplet drag and con- 
vective heating can be used with the present 
determinations of radiative heating to demonstrate 

evaporation rates and the relative magnitudes of 
radiative and convective heating. 

In many typical nuclear reactor accident scenarios 

water droplets are heated in very hot water vapor 
with a fairly low concentration of noncondensable 
gas. A droplet so situated reaches or becomes near 
the saturation temperature relatively quickly. Fur- 

ther heating causes evaporation; as shown in the 
following section, there would be negligible internal 
superheating. The evaporative mass flux at the 
surface is 

q &” = _ 

it,, 
(32) 

where k,, is the heat of vaporization and 4 = q,+qc 
is the combined radiative and convective heat flux. 

The time rate of change of the droplet size is 

1 dD 4 

2 dr P&r,, 
(33) 

where pr is the liquid density. This rate of change is 
integrated to obtain the evaporation time 

PlkJ, 

.i 

Di1 dD 
tevap = -1 - --- . 

D(t) (%+q,) 

(34) 

The radiative heat flux for black body surrounds at 

temperature TB is 

because the droplet emissivity is ~(7;~~) from 
Kirchhoffs law. 

The Reynolds number and Nusselt number of an 

evaporating droplet are generally functions of time. 

However, this unsteady convection can usually be 
well approximated using a quasi-steady approach, as 
has been shown for droplets falling from rest 
[23-251 and in situations with much larger acceler- 
ations [26]. The time constants in fall from rest are 

shorter than the evaporation rate time constants 

even when the ambient temperature is 1450 K. 
The steady state drag coefficient for rigid spheres, 

defined as 
d 

CT* = 
1/2p,U2A, 

where d is the drag, p, the ambient density, U the 
relative free stream velocity, and A, = KR*, is well 
correlated [27] by the simple relation 

cd = 0.2924( I +9.06/Re”2)” D I (37) 

Yuen and Chen [28] show that this rigid sphere drag 
also holds approximately for evaporating droplets; 
the effect of blowing (normal velocity at the surface) 
on c,, can be neglected for the present purposes. 
Their explanation is that although viscous drag is 

reduced by blowing, pressure drag is increased. 
because separation occurs earlier with blowing. 

The droplet acceleration is found to be 

3 /l2 
- - ~- Regc, 

4 P,.P$‘” 
(38) 

from a simple force balance. The Reynolds number 
as a function of time is obtained by integrating 
equation (38) 

P,UD 
Re,(t) = ~ = Rq@)+P,SD & t 

/J P i i Pl 

This droplet Reynolds number can be approximated 
by the terminal Reynolds number if J+ is much less 
than g. From equations (37) and (38) the terminal 
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o[mm].7;[K]= 373 450 6.50 x50 I050 1250 1450 

3: 0.9 0.9 I I Y Y 0.924 0,925 0.9 0.930 30 0.930 O.Y31! 0.914 0.932 0.908 0.933 O.Y34 I 0.8X 
7.0 0,919 0.914 0.9 30 0.937 0.915 0.8YZ 0.858 
1 .o 0.919 0.914 0.928 0.918 0.893 OMJ 0.bO.s 
0.5 0.919 0.924 O.Y24 0.905 0.865 0.809 0.745 
0.2 0.917 0.920 O.YlO 0.871 0.8)O 0.735 0.656 
0. I 0.907 0.902 0.870 0.81 0.740 0.657 0.575 
0.05 0.865 0.844 0.782 0.714 0.637 0.557 0.4x I 
0.02 0.726 0.680 0.592 0.530 0.470 0.4 IO 0.352 
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

The average Nusseit number for a sphere without 
blowing is well correlated by [29] 

Y,+D ‘VU;; = .__ __-- = 1.56+0.616Rr’~2Pr”~ 
&7;.- T,,,) 

D 

for Ru,~P?~~ > 2 (41a) 

= 2.00+0.216Rr,,PtJ 3 

for Rr,jPrZ*J < 2. (41b) 

A very common heat-transfer blowing correction 
invoked for evaporatiIlg droplets [SO] is 

intl i-B) 
Yc = Y‘T ----- 

B 
(43 

where the superheat parameter is 

and where cpt, is the heat capacity at constant 

pressure evaluated at the ambient temperature. The 
thermal conductivity, k, and the viscosity, p, have 
often been successfully evaiuated at the “l/3 rule” 

reference temperature [X], T,, = r,,, + (T. - T,,,)/3. 

RESULTS AND CONCLUSIONS 

The present ray tracing procedure and that of 
Edwards [22] for thick plane parallel layers are 
algebraically very different, but in actual physical 
modeling, they differ only in how the phase of the 
electromagnetic radiation is handled. In the present 

procedure, the phase is ignored or effectively aver- 
aged before the ray encounters any surface. Edwards 
retains the phase in his ray tracing, which allows 
interference effects, then he averages over phase by 
integrating after the ray tracing is completed. A 
computer code was obtained from Edwards which 
computes perpendicular and parallel components of 
transmittance, reflectance, and absorptance for a 
thick parallel layer using his approach; another 
computer code was written which computes the same 
parameters using the present analysis. Due to 
analogous symmetries, the parallel layer absorption 
problem is nearly identical to the sphere absorption 
problem. Runs were made with the two codes for 
layer thicknesses of 0.1 and 0.5 mm, with the optical 
properties of water, at various incident angles and 

wavelengths. In all cases, the results of the two codes 
were identical to five or six significant figures. 

The effective absorptance of water droplets has 

been computed for black body temperatures from 
373 to 1450K and droplet diameters from 0.02 to 
3.0mm (see Table 1). The integrals in equation (25) 

were evaluated using the trapezoidal rule with SO 
equal divisions of 0 and with 157 different wave 
lengths from 0.5 to 200pm (at those values in [IS] 
where the complex refractive index is tabulated). It 

can be seen from Table 1 that water droplets absorb 
very strongly. The effective absorptance is only 
weakly dependent on the black body temperature. 
but the effective absorptance is generally greater for 

&- 
E 

2 
a= 

.O .2 .4 .6 .8 1.0 

h/RI 

Fro. 3. Radial dependence of volumetric heating. 
r, = 650 K. 
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FIG. 4. Radial dependence of volumetric heating, 
TB = 1050K. 

lower black body temperatures. The emissivity of an 
isothermal droplet, from Kirchhoff’s law, is the 
effective absorptance evaluated at the droplet 
temperature. 

The volumetric heating as a function of radial 
position has been computed using equation (31) with 
twenty equal radial divisions of the droplet (see Figs. 

Table 2. cumulative evaporation time (s) for water droplets at their instantaneous 

0. .2 A .6 .8 1.0 

(r/R) 

FIG. 5. Radial dependence of volumetric heating, 
T, = 145OK. 

3-S), for black body temperatures 650. 1050 and 
1450K, for an isothermal droplet temperature of 
373K, and for a range of droplet diameters. The 
same 157 wave number divisions and 50 equal 
angular divisions as mentioned previously were used 
for these computations. Most rays in the black body 
distribution are strongly attenuated and do not 

terminal velocity with 7;, = TB 

D [mml/T, [Kl = 450 
.- 

3.0 0.0 
2.8 12.2 
2.6 24.3 
2.4 36.1 
2.2 47.8 
2.0 59.2 
f.8 70.4 
1.6 81.4 
1.4 92.1 
1.2 102.0 
1.0 t 12.0 
0.8 122.0 
0.6 131.0 
0.4 140.0 
0.2 147.0 
0.1 150.0 
0.01 151.0 
0.00 151.0 

650 850 1050 1250 1450 
.._ 

0.0 0.0 0.0 0.0 0.0 
3.47 1.94 1.27 0.885 0.640 
6.90 3.85 2.52 1.76 1.28 

10.3 5.75 3.76 2.63 1.91 
13.6 7.61 4.98 3.50 2.54 
i 6.7 9.45 6.19 4.35 3.16 
20.1 11.3 7.38 5.19 3.78 
32.2 13.0 8.55 6.03 4.40 
26.3 14.8 9.70 6.85 5.00 
29.3 16.4 10.8 7.65 5.60 
32.1 18.1 11.9 8.44 6.19 
34.9 19.7 13.0 9.21 6.77 
37.6 21.2 14.0 9.94 7.32 
40.0 22.6 14.9 10.6 7.84 
42.2 23.8 15.7 11.2 8.30 
42.9 24.2 16.0 11.4 8.45 
43.3 24.4 16.1 11.5 8.51 
43.3 24.4 16.1 11.5 8.51 
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Table 3. Fall distance (m) of evaporating water droplets during their lifetime with 7; = 7,, 

D [mm];T, [K] = 450 650 X50 1050 1250 1450 

3 .o 
2.x 
2.6 
2.4 
2.2 
2.0 
1.8 
1.6 
1.4 
1.2 
I.0 
0.X 
0.6 
0.4 
0.2 
0. I 
0.01 

1246.0 
1089.0 
041.6 
803.8 
675.4 
S57.6 
450.1 
353.4 
267.3 
192.6 
119.6 
7x.5 
40. I 
14.5 
1.1 
0.2 
0.0 

401.x 243.x 169.2 124.1 92.98 
350.6 212.3 147.2 107.‘) X0.X8 
307.2 182.7 126.5 92.70 6Y.4X 
257.2 155.2 107.3 7x.55 5X.X6 
2 IS.4 129.6 x9.44 65.42 49.0 I 
177. I 106.2 73.13 53.42 40.00 
142.2 X4.96 5X.33 42.54 31x2 
II 1.0 65.97 45.13 32.X3 24.52 
x3.31 49.22 33.5 I 24.3 I IX.13 
59.42 34.83 23.57 17.03 17.67 
39.45 22.87 15.35 I 1.02 8.17 
23.46 13.39 8.X8 6.32 4.66 
I I.62 6.48 4.22 2.97 7.17 
4.0 I 2.15 1.36 0.93 (I.67 
0.5 I 0.25 0.1 5 0.10 0.07 
0.04 0.02 0.0 I 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 

Table 4. Heat flux ratio. ~/,,‘q,., for water droplets at their instantaneous terminal 
velocity with 7; = T,< 

D [mml,'T, WI = 450 650 850 1050 1250 I450 

3.0 0.069 0.157 0.314 0.584 I .05 1.88 
2.x 0.068 0.155 0.310 0.574 1.03 I.83 
2.6 0.067 0.152 0.304 0.563 I .oo 1.7x 
2.4 0.066 0.150 0.300 0.551 0.982 1.72 
2.2 0.065 0.147 0.293 0.539 0.954 1.66 
2.0 0.063 0.144 0.286 0.525 0.924 I .60 
1.X 0.062 0.141 0.279 0.510 0.892 1.53 
1.6 0.06 I 0.137 0.27 1 0.493 0.857 1.45 
I .4 0.059 0.133 0.264 0.477 0.825 1.3X 
1.2 0.057 0.129 0.254 0.457 0.781 1.29 
1.0 0.055 0. I24 0.243 0.433 0.729 1.18 
0.8 0.052 0.1 IX 0.229 0.404 0.669 1.06 
0.6 0.049 0.110 0.213 0.369 0.599 0.920 
0.4 0.045 0.098 0.185 0.31 1 0.484 0.707 
0.2 0.036 0.075 0.134 0.210 0.298 0.393 
0.1 0.025 0.046 0.074 0.105 0.139 0.172 
0.03 0.007 0.012 0.019 0.026 0.033 0.039 
0.01 0.00 I 0.002 0.003 0.004 0.005 0.006 

penetrate far past the surface. Rays at some wave 
numbers are only weakly absorbed. These weakly 
absorbed rays are focused toward the center, which 
explains the relative maximum in volumetric heating 
in the 0.7 < (r/R) < 0.8 region which occurs for the 

smaller droplets. 
To demonstrate typical relative magnitudes of 

radiative heat flux and convective heat flux, and to 
demonstrate typical evaporation times, these para- 
meters were computed for water droplets falling at 
their instantaneous terminal velocity relative to pure 
superheated water vapor at a pressure of one bar. 
The ambient vapor temperature was taken to be 
equal to the black body radiating temperature. The 
fluid properties were taken from [31] with AL, k, and 
Pr evaluated at the “l/3 rule” reference temperature 
and p,, evaluated at the ambient temperature. For a 
given temperature of the surrounds, the droplet 
evaporation rate, dD/dt, is approximately constant 

for droplets larger than 1 mm, while dD’/dt is nearly 
constant for droplets smaller than 0.1 mm. The total 
evaporation of an initially 1 3mm diameter droplet 
takes tens of seconds, while the total evaporation of 
a 0.1 mm droplet takes tenths of seconds (see Table 
2). The fall distance of evaporating droplets during 
their lifetime is given in Table 3. The radiative heat 
flux is generally very significant compared with the 
convective heat flux, for temperatures above 450K. 
unless the droplet diameter is less than 30pm (see 
Table 4). The radiative heat transfer to the droplet 
can actually be greater than the convective heat 
transfer if the temperature of the surrounds is above 
about 1250K. 

The assumption that the droplet falls at its 
instantaneous terminal velocity is the same as the 
assumption that the fall velocity does not depend on 
past history; this holds when the acceleration, \:. is 
much less than CJ. In the just described evaporation 
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computations, the highest acceleration (at 1450 K) 14. 

was X = -0.3 g. If history effects were included for 

this 1450 K case, starting with a 3 mm droplet at its 

terminal velocity, the instantaneous Reynolds num- 
bers would be only as much as 7% higher for this 
extreme case. The maximum acceleration for other 
surround temperatures can be estimated by pro- 15. 

portioning the evaporation times. The instantaneous 
terminal velocity approximation is usually very 16. 
good. 
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ABSORPTION RADIATIVE PAR EVAPORATION DE GOUTTELETTES 

RBsum&Le chauffage volumique du a I’absorption radiative est calcul& en fonction de la position radiale 
de gouttelettes sphbriques d’eau dans un environnement de corps noir, g des tempkratures allant jusqu’i 
1450 K. L’absorptance effective de la goutte et le temps d’tvaporation i partir d’un diamttre de rifkrence 
a &tC calcult: et tabult. En prenant des diffkrences entre entrees de la table, le temps pour tvaporer d’un 
diamktre i un autre peut &tre trouvt. La procCdure dCvelopp&e pour ces calculs inclut la polarisation, la 

r&fraction, la rtflexion externe. les rtflexions multiples internes et I’absorption. 
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STRAHLUNGSABSORPTION DURCH VERDAMPFUNG VON TRC)PFCHEN 

Zu~mmenfa~ung-Die E~~rrnung eines Volumens durch Strahlungsabsorption wurde als Funktion 
der radialen Position fir kugelftirmige Wassertropfen in der Umgebung von schwarzen Kiirpern mit 
Temperaturen bis zu 1450K berechnet. Die effektive Absorption des TrGpfchens und die Verdampfung- 
szeit von einem Referenzdurchmesser bis zu beliebigen kleineren Durchmessern wurde berechnet und 
tabelliert. Durch Interpolation zwischen den Eingangswerten der Tabelle kann die Zeit fiir die 
Verdampfung von einer GrGBe zur niichsten gefunden werden. Bei der Berechnung der Strahlungsvor- 
giinge wurden Polarisation. Brechung. auBere Reflexion, mehrfache innere Reflexion und Absorption 

beriicksichtigt. 

nOi-_JlOli(EHME M3JIYYEHMFI MCIIAPIItOUIMMMCII KAnJlRMM 

.kfHOTalWS --- h22fkifaH Oht;MIiblii HifrpB C@epWieCKifX KalIeJIb BOLibl. 06yCnOBneHHbifi ilOrIlOII&e- 

HWM H3,F,‘YeH,SI OT %pHOrO TeJla npti TeMnepZiTypaX BnnOTb EO 1450 K KBR &,‘HKUS%? Pa~~a~~bHO~ 

KOO~~~"aTb,. hCCWTaHbi TaKxe tl .~aTO6y~~~OBa~ibi 3S$jEKTUBHa51 IlOrflO~aTenbHa~ CIlOCO6HOCTb 

KaEAH L1 BfEMX, ?a KOTO~e IGiaMeTjYJ KBIlJlll MeHWTCII OT’ HaVaJIbHOrO a0 ~38,laHHOTO 3HaLIeHRR. AaHHbie. 

npencTaB,~e~~~e~Ta6n~ue,no3eo.~n~o~rpacc~uTaTb spe~fi w2napeHwa o~oaHoropa3hlepaaonpyroro. 

fly'lCBOfi IlO,!lXOiL pa3BHTbIii +lJlS4 ?TMX PWI~TOB. BKnMYaeT ~O~~pkf3aLlWO. p0j.JpaKWO. BHyTPeHHee 

OTpaS%HWe. MHOWKPaTHbI’Z BHyTPeHHHe OTjXGKKeHH~ H nOI-flOU(eHHe. 


